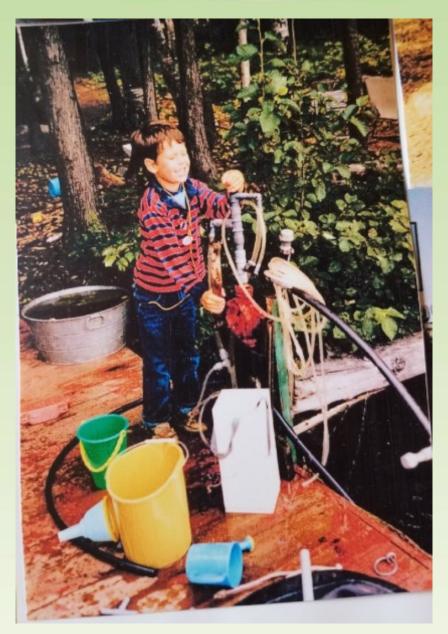


Introducing the ISA / IEC-62443
Series of Cybersecurity Standards
& Applying them to Municipal Water Systems

Graham Nasby, P.Eng, PMP, CAP
Water SCADA & Security Specialist
City of Guelph Environmental Services (Water)

2021 OWWA Automation Webinar Nov 4, 2021 – Ontario Waterworks Association – Ontario, Canada

About the Speaker


Graham Nasby, P.Eng., PMP, CAP
Water SCADA & Security Specialist
City of Guelph Environmental Services (Water Services)

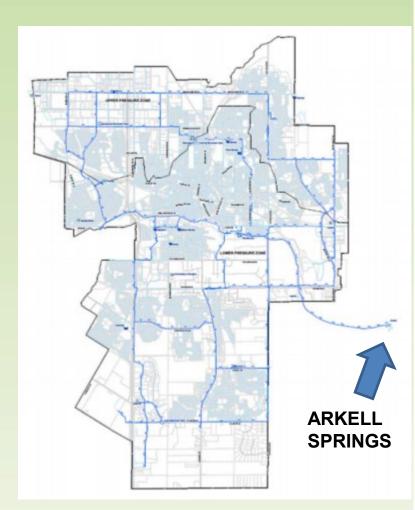
- 10 years in the consulting sector
- Joined Guelph Water Services in 2015

- OWWA and WEAO Member, Member of OWWA Automation Committee
- Co-chair of ISA112 SCADA Systems standards committee
- Voting member of ISA101 HMI Design standards committee
- Voting member of ISA18 Alarm Management standards committee
- Named Canadian Expert on IEC/SCC-TC65 with Standards Council of Canada
- Guest instructor at McMaster University and Conestoga College
- Has published over 40 papers and articles on automation topics
- Received University of Guelph "Mid Career Achievement Award" in 2014
- Received ISA's Standards Committee Leader of the year award in 2021.
- Contact: <u>graham.nasby@guelph.ca</u>

I wanna be a Water Guy when I grow up!

City of Guelph Water Services

- Guelph, Ontario, Canada
- 140,000 residents
- 21 groundwater wells
- 3 water towers
- 549 km of water mains
- 49,000 service connections
- 2,750 fire hydrants
- 35 unmanned facilities
- 46,000 m³/day [12 MGD]
- 60,000 m³/day peak [15 MGD]



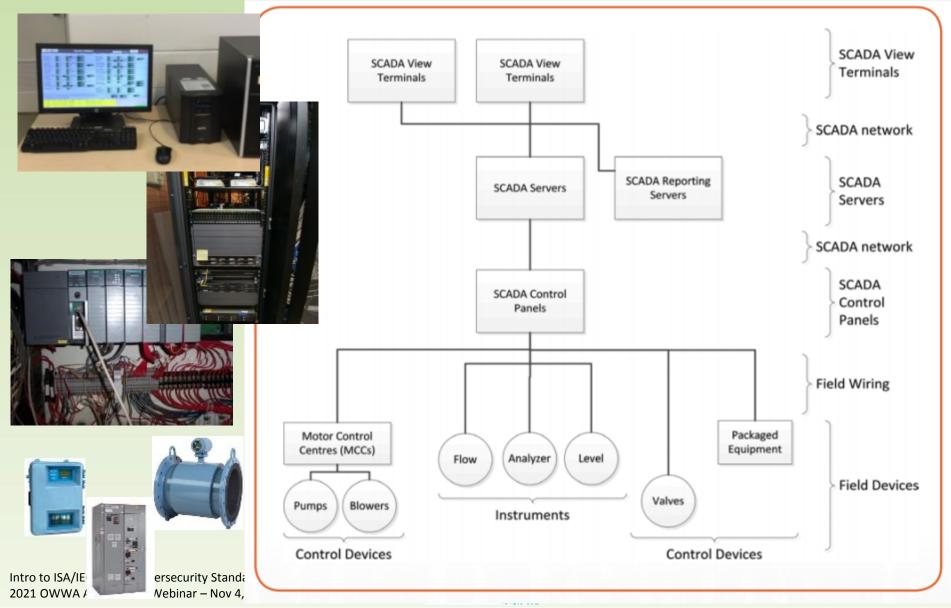
Guelph Water Connected with SCADA

- Approx. 15km x 15km area
- 35 Facilities
 - 4 booster stations
 - 21 wells
 - 2 valve chambers
 - 3 water towers
 - 5 monitoring sites
- 40 PLCs plus 2 data centers
- Redundant Data-Logging
 - Traditional SCADA data-logging
 - QuickPanels with store/forward
 - DNP3 Data-loggers with store/forward
- High availability SCADA network
 - Primary: private fibre optic
 - Secondary: private wireless, with 45 second auto-failover

Presentation Outline

- SCADA Refresher
- What are the ISA/IEC-62443 Standards
- Who develops the 62443 standards
- 62443 Standards Structure & Documents
- Common Themes of ISA/IEC-62443 Standards
- Structure of the Standards
- Maturity, Security Level, Zones/Conduits
- Key ISA/IEC-62443 Concepts
- How to Apply 62443 Standards to SCADA Systems
- Working with other Cybersecurity Standards
- Best Practices & Take-Aways

A Quick SCADA Refresher



SCADA = Supervisory Control and Data Acquisition

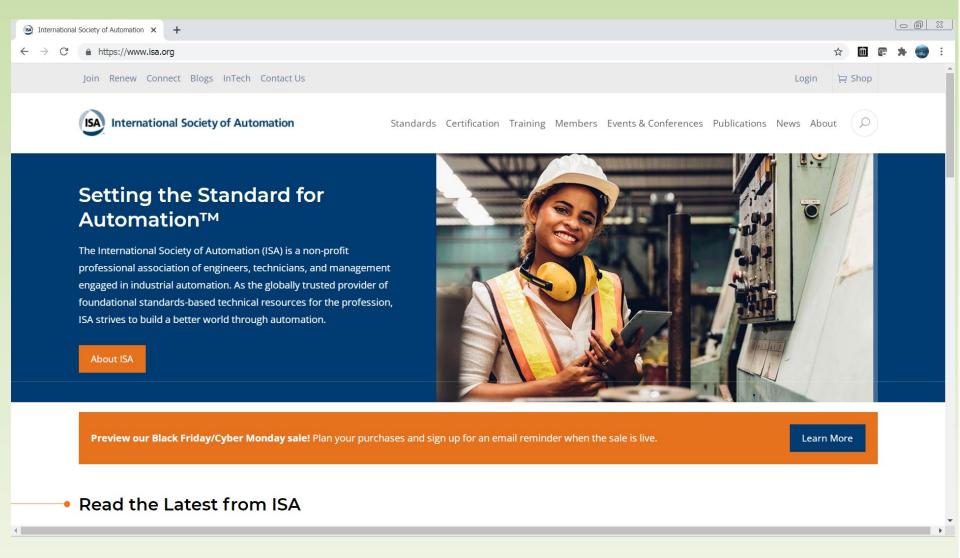
Typical SCADA Architecture

Introducing the ISA/IEC-62443 Standards

General		Po	Policies & Procedures		System			Component / Product		
1-1	Concepts and models	2-1	Security program requirements for IACS asset owners	3-1	Security technologies for IACS		4-1	Product security development life-cycle requirements		
1-2	Master glossary of terms and abbreviations	2-2	Security protection scheme and security protection ratings	3-2	Security risk assessment and system design		4-2	Technical security requirements for IACS components		
1-3	System security conformance metrics	2-3	Patch management in the IACS environment	3-3	System security requirements and security levels					
1-4	Security life cycle and use cases	2-4	Security program requirements for IACS service providers		In ISA / IEC-62443 te	rm	inolo	gy:		
			Implementation guidance for IACS asset owners		IACS = Industrial Auto also known as "OT" o					

Who Develops the 62443 Standards

- ISA-62443 (and IEC 62443); a series of standards developed primarily by ISA and published by two groups:
 - ISA99 → ANSI/ISA-62443
 - IEC TC65/WG10 → IEC 62443
- In consultation with:
 - ISO/IEC JTC1/SC27 → ISO/IEC 2700x



ISA – International Society of Automation

ISA99 Standards Committee

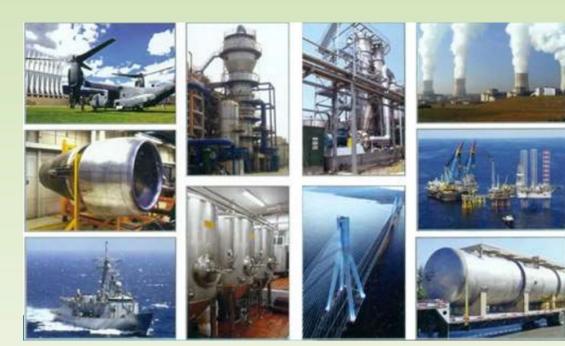
The International Society of Automation (ISA) committee ISA99 Security for Industrial Automation & Control Systems

- Members from around the world
- Multiple sectors and stakeholders
- Working in collaboration with IEC TC65 WG10
- Consistent leadership since c. 2002

ISA99 Committee Scope(*)

"... automation and control systems whose compromise could result in any or all of the following situations:

- endangerment of public or employee safety
- environmental protection
- loss of public confidence
- violation of regulatory requirements
- loss of proprietary or confidential information
- economic loss
- impact on entity, local, state, or national security"


(*) Taken from the original committee scope description

ISA99 Committee Membership

Reflects expertise from many sectors, including:

- Chemicals, Oil and Gas
- Food and Beverage
- Energy
- Pharmaceuticals
- Water/Wastewater
- Manufacturing
- Transportation
- ICS suppliers
- Government

ISA/IEC-62443 Standards Documents

General		Po	Policies & Procedures		System			Component / Product		
1-1	Concepts and models	2-1	Security program requirements for IACS asset owners	3-	Security technologies for IACS		4-1	Product security development life-cycle requirements		
1-2	Master glossary of terms and abbreviations	2-2	Security protection scheme and security protection ratings	3-2	Security risk assessment and system design		4-2	Technical security requirements for IACS components		
1-3	System security conformance metrics	2-3	Patch management in the IACS environment	3-	System security requirements and security levels					
1-4	Security life cycle and use cases	2-4	Security program requirements for IACS service providers		In ISA / IEC-62443 te	- erm	inolo	gy:		
		2-5	Implementation guidance for IACS asset owners		IACS = Industrial Aut also known as "OT" o			<u>.</u>		

ISA/IEC-62443 Common Themes

Defense In Depth

 Defense in Depth is a concept in which several levels of security (defense) are distributed throughout the system. The goal is to provide redundancy in case a security measure fails or a vulnerability is exploited.

Zones and Conduits

- **Zones divide a system into homogeneous zones** by grouping the (logical or physical) assets with common security requirements. The security requirements are defined by Security Level (SL). The level required for a zone is determined by the risk analysis.
- Zones have boundaries that separate the elements inside the zone from those outside. Information moves within and between zones. Zones can be divided into sub-zones that define different security levels (Security Level) and thus enable defense-in-depth.
- Conduits group the elements that allow communication between two zones. They
 provide security functions that enable secure communication and allow the coexistence
 of zones with different security levels.

ISA/IEC-62443 Common Themes

Maturity Level

- Maturity Level 1 Initial: Product supplier/implementers usually carry out product development ad hoc and often undocumented process
- Maturity Level 2 Managed: The product supplier/implementer is able to manage the
 development of a product according to written guidelines. It must be demonstrated that
 the personnel who carry out the process have the appropriate expertise, are trained
 and/or follow written procedures. The processes are repeatable.
- Maturity Level 3 Defined (practiced): The process is repeatable throughout the supplier's organization. The processes have been practiced and there is evidence that this has been done.
- Maturity Level 4 Improving: Product suppliers use appropriate process metrics to monitor the effectiveness and performance of the process and demonstrate continuous improvement in these areas.
- Maturity Level 5 Same as 4, but has been improved/optimized over time, and continues to be optimized to meet both security and repeatability goals

ISA/IEC-62443 Common Themes

Security Level

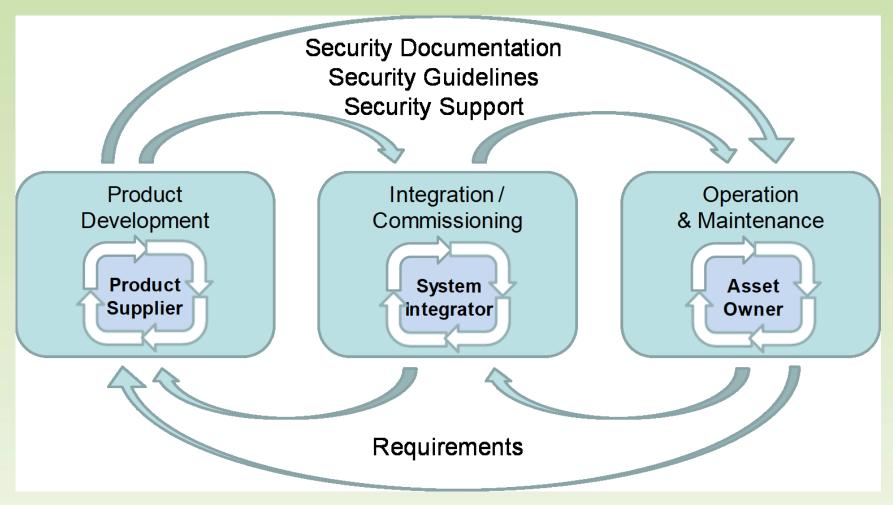
- Technical requirements for systems (IEC 62443-3-3) and products (IEC 62443-4-2) are evaluated in the standard by four so-called Security Levels (SL). The different levels indicate the resistance against different classes of attackers. The standard emphasizes that the levels should be evaluated per technical requirement (see IEC 62443-1-1) and are not suitable for the general classification of products.
- **Security Level 0:** No special requirement or protection required.
- Security Level 1: Protection against unintentional or accidental misuse.
- **Security Level 2:** Protection against intentional misuse by simple means with few resources, general skills and low motivation.
- **Security Level 3:** Protection against intentional misuse by sophisticated means with moderate resources, IACS-specific knowledge and moderate motivation.
- Security Level 4: Protection against intentional misuse using sophisticated means with extensive resources, IACS-specific knowledge and high motivation.

ISA/IEC-62443 Components

- Principal Roles
- Life Cycles and Processes
- System Under Consideration
- General Security Concepts
- Operations Security Concepts
- Foundational Requirements

Principal Roles

- Asset Owner
- Product Supplier
- Maintenance Service Provider
- Integration Service Provider


Associated Roles

- Asset Operator
- Regulatory Authority
- Compliance Authority

Related Lifecycles

Based on VDI 2182

System to be Protected

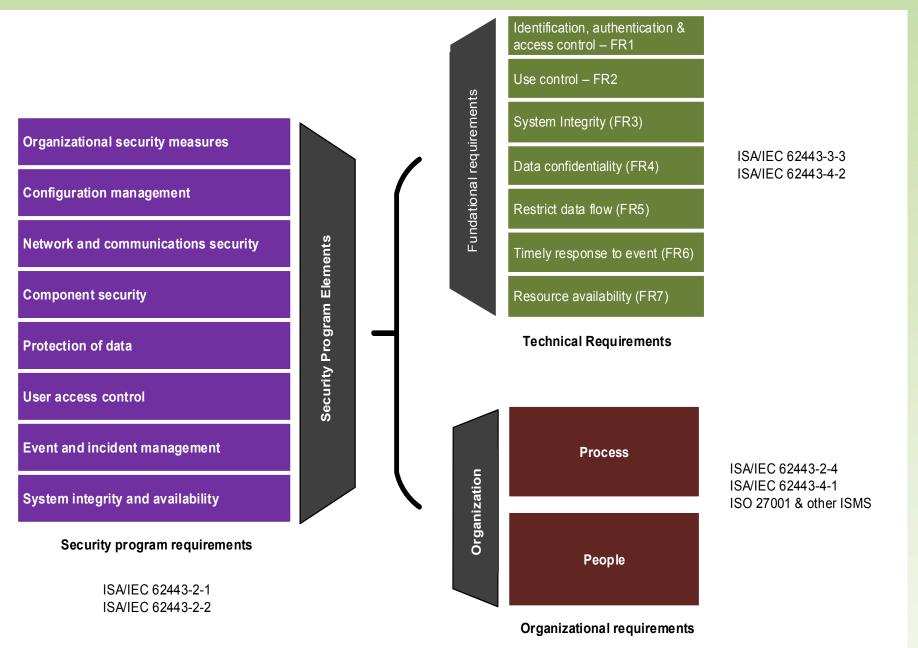
- Describes the scope of the system being addressed by the security response
- Must be defined by the asset owner for the specific situation
- What is being protected?
- What do you want to protect it from?
- What level of risk is acceptable?
- How many resources to invest...

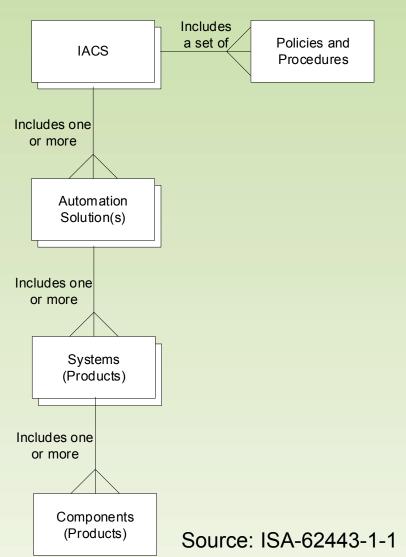
General Security Principals

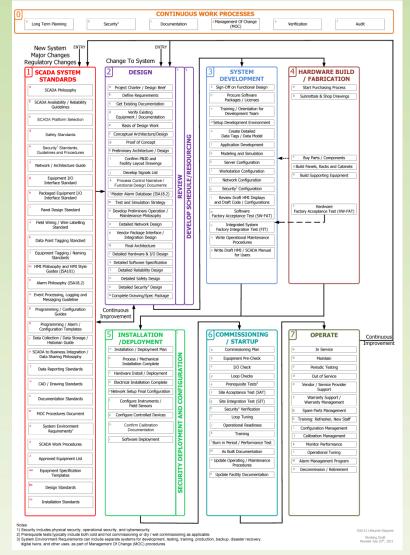
- Security Elements
- Risk-Based Approach
- Compensating Measures
- Least Privilege
- Least Function
- Essential Function
- Defense in Depth
- Supply Chain Security

Source: ISA-62443-1-1

Operations Security Principals

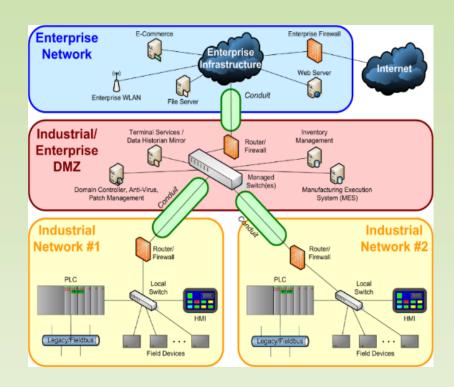

- How Different Parts of the System are Used
- Defining System Access Points
- Safety, Integrity, Availability, Confidentiality (OT vs IT)
- Zones and Conduits
- Security Levels
- Maturity Levels
- Security Protection Scheme
- Security Protection Rating
- Security and Functional Safety


Source: ISA-62443-1-1



Security Element Grouping

Typical Structure of IACS System (SCADA)



Source: ISA112

Zones & Conduits

- A means for defining...
 - How different systems interact
 - Where information flows between systems
 - What form that information takes
 - What devices communicate
 - How those devices communicate
 - The security differences between system components

Source: ISA112

Technology helps, but architecture is more important

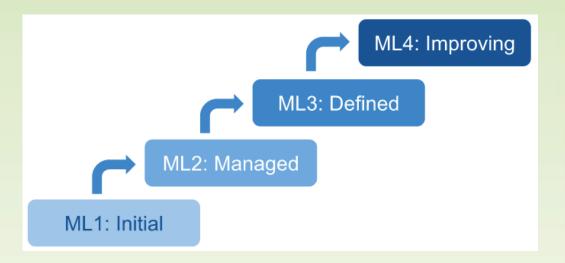
Security (Protection) Levels

Protection against...

Intentional Violation Using Sophisticated Means with Extended Resources, IACS Specific Skills & High Motivation

Intentional Violation Using Sophisticated Means with Moderate Resources, IACS Specific Skills & Moderate Motivation

Intentional Violation Using Simple Means with Low Resources, Generic Skills & Low Motivation


Casual or Coincidental Violation

Source: ISA112

(Security) Maturity Levels

- A means of assessing capability
- An evolving concept in the standards
- Progressive levels of achievement
 - Initial
 - Managed
 - Defined
 - Improving

Foundational Requirements

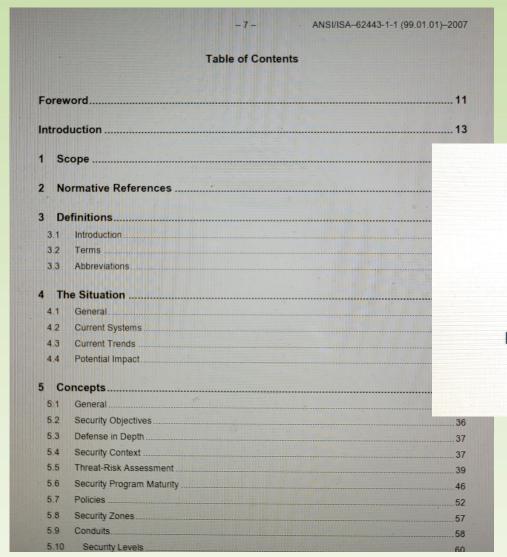
- FR 1 Identification & authentication control
- FR 2 Use control
- FR 3 System integrity
- FR 4 Data confidentiality
- FR 5 Restricted data flow
- FR 6 Timely response to events
- FR 7 Resource availability

Other Important Requirements

- Safety, Integrity, Availability, Confidentiality
 - Addition of safety
 - Availability has the highest priority after safety
- Functional Safety and Security
 - Coordinated approach to risk assessment

Other Important Requirements

- Security Protection Scheme (SPS)
 - a set of technical and organizational security measures for protecting the system against cyber threats during operation
- Security Protection Rating (SPR)
 - used when assessing the fulfillment by the SPS of the security requirements



ISA/IEC-62443 Standards Documents

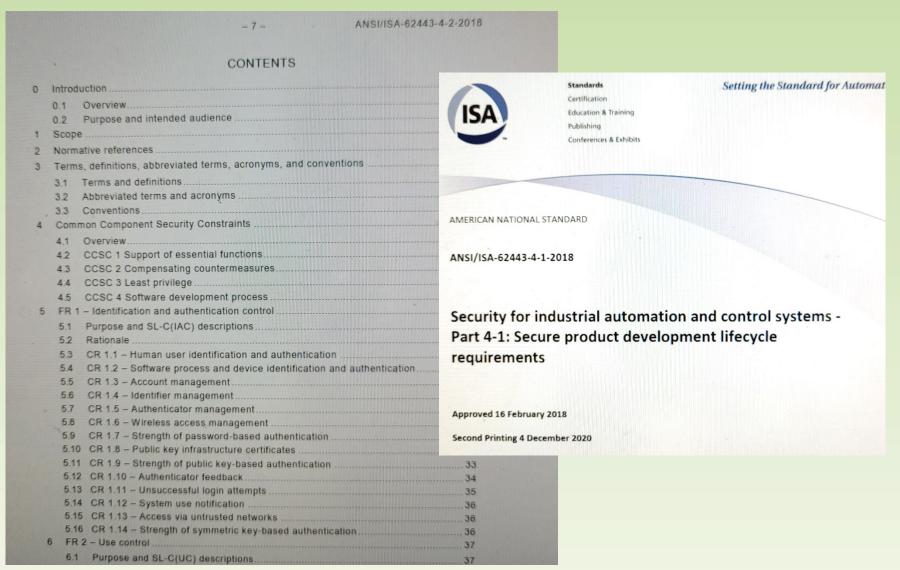
General		Po	Policies & Procedures		System			Component / Product		
1-1	Concepts and models	2-1	Security program requirements for IACS asset owners	3-	Security technologies for IACS		4-1	Product security development life-cycle requirements		
1-2	Master glossary of terms and abbreviations	2-2	Security protection scheme and security protection ratings	3-2	Security risk assessment and system design		4-2	Technical security requirements for IACS components		
1-3	System security conformance metrics	2-3	Patch management in the IACS environment	3-	System security requirements and security levels					
1-4	Security life cycle and use cases	2-4	Security program requirements for IACS service providers		In ISA / IEC-62443 te	- erm	inolo	gy:		
		2-5	Implementation guidance for IACS asset owners		IACS = Industrial Aut also known as "OT" o			<u>.</u>		


AMERICAN NATIONAL STANDARD

ANSI/ISA-62443-1-1 (99.01.01)-2007 (formerly designated as ANSI/ISA-99.00.01-2007)

Security for Industrial Automation and Control Systems Part 1-1: Terminology, Concepts, and Models

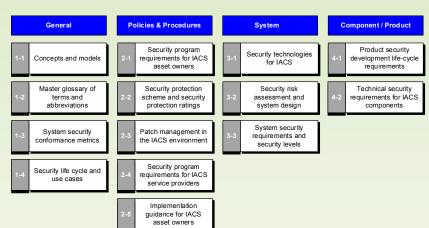
Approved 29 October 2007


12 A	August 2013	- 7 - ANSI/ISA-62443-3-3 (99.03.	03)-2013				
		CONTENTS					
DDI	EFACE		3				
0							
		udience					
		of the ISA-62443 series					
1	Scope		15				
2	Normative references		15				
3	Terms, definitions, abbreviate	d terms, acronyms, and conventions	15				
	3.1 Terms and definitions		18				
	3.2 Abbreviated terms and a	acronyms	2				
	3.3 Conventions		23				
4	Common control system secur	rity constraints	24				
	4.1 Overview						
		ctions					
	4.3 Compensating counterm	neasures	24				
	4.4 Least privilege		25				
5	FR 1 - Identification and auth	entication control	25				
	5.1 Purpose and SL-C(IAC)	descriptions	25				
	5.3 SR 1.1 - Human user id	lentification and authentication	25				
	5.4 SR 1.2 - Software proce	ess and device identification and authentication	27				
	5.5 SR 1.3 - Account mana	gement	28				
	5.6 SR 1.4 - Identifier mana	agement	28				
	5.7 SR 1.5 - Authenticator	management	29				
	5.8 SR 1.6 - Wireless acces	ss management	30				
	5.9 SR 1.7 - Strength of pa	ssword-based authentication	31				
		astructure (PKI) certificates					
		blic key authentication					
		r feedback					
		I login attempts					
		notification					
6		ntrusted networks					
0							
		descriptions					
	6.2 Rationale		36				

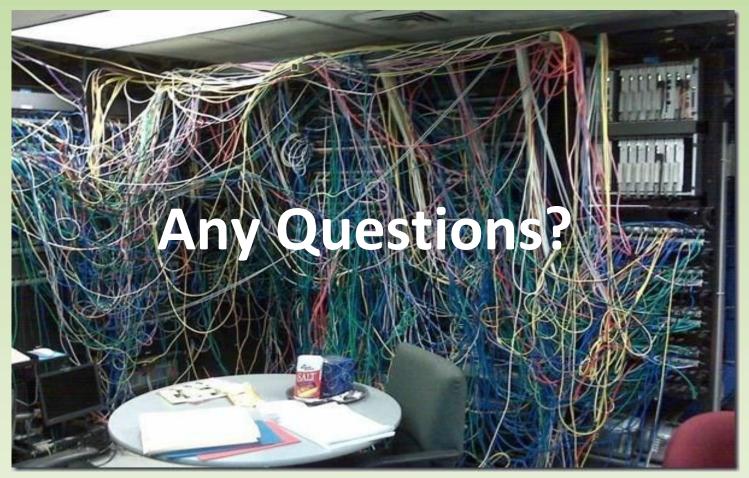
ANSI/ISA-62443-3-3 (99.03.03)-2013

Security for industrial automation and control systems Part 3-3: System security requirements and security levels

Approved 12 August 2013


ISA/IEC-62443 Standards Documents

General		Po	Policies & Procedures		System			Component / Product		
1-1	Concepts and models	2-1	Security program requirements for IACS asset owners	3-	Security technologies for IACS		4-1	Product security development life-cycle requirements		
1-2	Master glossary of terms and abbreviations	2-2	Security protection scheme and security protection ratings	3-2	Security risk assessment and system design		4-2	Technical security requirements for IACS components		
1-3	System security conformance metrics	2-3	Patch management in the IACS environment	3-	System security requirements and security levels					
1-4	Security life cycle and use cases	2-4	Security program requirements for IACS service providers		In ISA / IEC-62443 te	- erm	inolo	gy:		
		2-5	Implementation guidance for IACS asset owners		IACS = Industrial Aut also known as "OT" o			<u>.</u>		



Applying ISA/IEC-62443 to the Water Sector

- Use Zones & Conduits Architecture Segment & Protect
- Design Security into the System instead of afterwards
- Use a Risk-Based Approach to Design, Testing & Ops
- Design a system around: Least Privilege, Least Function
- Defense in Depth
- Supply Chain Security
- Documented Procedures
- Review Security Frequently
- Active Monitoring
- Treat it as a Lifecycle

* Not a High Performance SCADA System

Graham Nasby, Water SCADA & Security Specialist graham.nasby@guelph.ca

