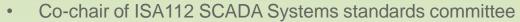


## Chasing the White Rabbit...

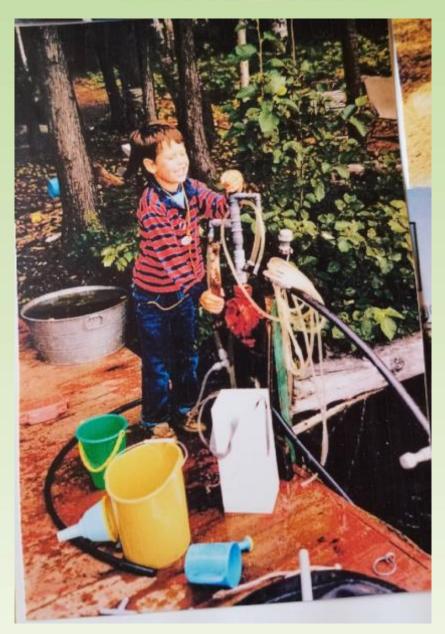
Why Time Synchronization for OT and SCADA systems is a lot harder than it seems

Graham Nasby, P.Eng, PMP, CAP Water SCADA & Security Specialist City of Guelph Environmental Services




Members Meeting (virtual lunch & learn) – ISA New Jersey Section April 26, 2022 – International Society of Automation – New Jersey, USA – <u>www.isanj.com</u>

## **About the Speaker**


**Graham Nasby**, P.Eng., PMP, CAP Water SCADA & Security Specialist City of Guelph Environmental Services

- 20 years experience in operations, construction and automation sector
- Joined Guelph Water Services in 2015



- Voting member of ISA101 HMI Design and ISA18 Alarm Management committees
- Past Section President, Division Director, Technical VP within ISA at the society-level
- Member of IEC/SCC TC65A "Industrial process measurement, control and automation"
- Member of CSA P125 "Operational Technology: Functional Safety and Security"
- Active volunteer with American Waterworks Association and Water Environment Federation
- Sessional instructor at McMaster University (Hamilton, ON) and Conestoga College (Cambridge, ON)
- Has published over 50 papers and articles on automation topics
- Received ISA's technical division leader of the year award in 2013
- Received "Mid-Career Achievement Award" from his alma mater University of Guelph in 2014
- Recipient of the ISA's society-level Standards Excellence award in 2021
- Contact: <u>graham.nasby@grahamnasby.com</u>.





## I wanna be a Water Guy when I grow up!

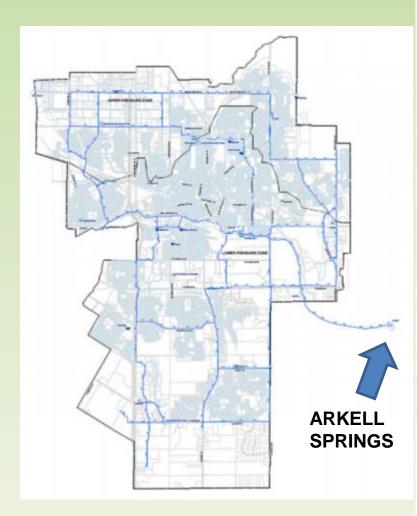


#### **Presentation Outline**

- How we use Time in OT & SCADA systems
- Compliance data needs correct time/date-stamps
- What Needs Synchronizing
- Technical Introduction to Time (& Some History)
- Local Time Zones, Daylights Savings Time
- Time Sources
- Time Synchronization Protocols
- Sample "Time Distribution" architecture
- Using Time Synchronization in SCADA Systems
- How Guelph Water Synchronizes time in its SCADA system
- Best Practices & Take-Aways



## **City of Guelph Water Services**

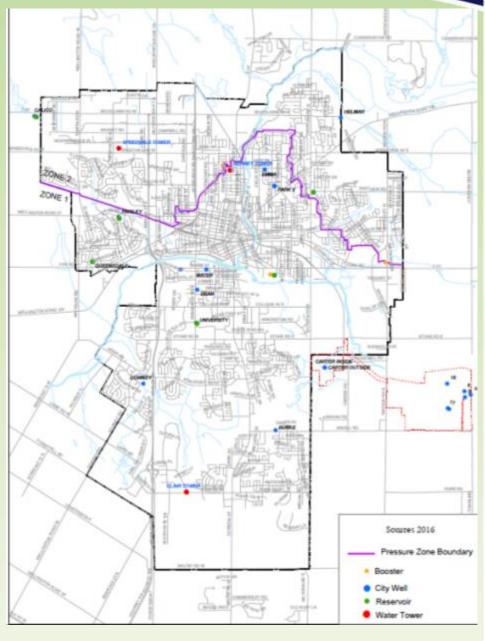

- Guelph, Ontario, Canada
- 140,000 residents
- 21 groundwater wells
- 3 water towers
- 549 km of water mains
- 49,000 service connections
- 2,750 fire hydrants
- 35 unmanned facilities
- 46,000 m<sup>3</sup>/day [12 MGD]
- 60,000 m³/day peak [15 MGD]





## **Guelph Water Connected with SCADA**

- Approx. 15km x 15km area
- 35 Facilities
  - 4 booster stations
  - 21 wells
  - 2 valve chambers
  - 3 water towers
  - 5 monitoring sites
- 40 PLCs plus 2 data centers
- Redundant Data-Logging
  - Traditional SCADA data-logging
  - QuickPanels with store/forward
  - DNP3 Data-loggers with store/forward
- High availability SCADA network
  - Primary: private fibre optic
  - Secondary: private wireless, with 45 second auto-failover





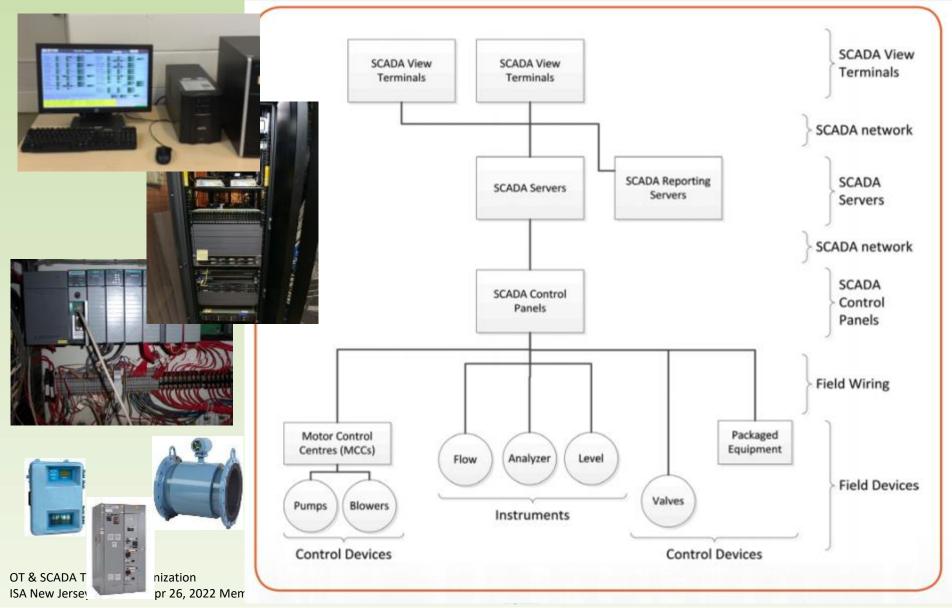

#### **Water Supply Facilities**

- Woods Station (Chlorine Bldg., UV Bldg., Reservoirs, Booster Station)
- Arkell Wells 1 & 7
- Arkell Well 6
- Arkell Well 8
- Arkell Well 14
- Arkell Well 15
- Carter Wells
- Diversion Chamber
- Dodds Valve Chamber
- Edinburgh Well
- Smallfield Well
- Water Street Well
- Emma Well
- Park Wells
- Clythe Station
- Paisley Station
- Membro Well

- Downey Well
- Verney Tower
- Burkes Well
- Arkell Well
- Clair Tower
- Clair Booster
- Robertson Booster
- Helmar Well
- University Well
- Dean Well
- Calico Well
- Speedvale Tower
- Scout Camp
- Queensdale Well
- Gazer Mooney Analyzer



All sites are linked together with SCADA Network for remote control, automatic control, monitoring and logging.






**SCADA = Supervisory Control and Data Acquisition** 



## **Typical SCADA Architecture**



### **How Time is used in SCADA Systems**

- Time/Date-stamp logged data
  - In Historian, In PLCs, In Dataloggers
- Backup Data Logging
  - If clocks are not perfectly time synchronized,
    backup logging does <u>not</u> work
- Daily Flow Totalization
  - Start/End of Each day, Daily Flow Totals
- Time-based Control
  - Alarm Call Out Systems: Who it Calls First
  - Reservoir and Tower Filling
  - Filter Backwashes
  - Time of Day Peaking Wells
  - Automated Backups
- Report Generation
  - Select date/time ranges
  - On-Demand & Auto-Generated Reports





### SCADA Datalogging – Water Sector Example

- O.Reg. 170 Drinking Water Systems
- Free Chlorine Residuals Must be Logged Minimum Every 5 minutes
- Filter Plants: Turbidity must be logged every 15 minutes
- Low chlorine/turbidity alarms must be communicated promptly
- Process Values needed to prove primary disinfection

E.g., Levels, Flow Rates, Chlorine Concentration, UV Dose, etc.

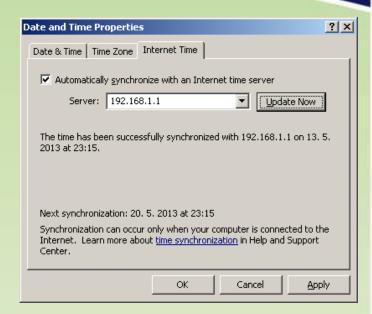
Meaning: Timestamps on logged data must be correct.



#### SCADA Data Logging - Water Sector Example (cont'd)

From O.Reg. 170, Section 6.5 – a drinking water regulation from Ontario, Canada

#### **Continuous Monitoring**


**TABLE** 

| Item | Parameter                                                                                                                                                      | Minimum Testing and Recording Frequency | Maximum Alarm Standard                     | Minimum Alarm Standard                                                                                                              |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 1.   | Free chlorine residual required to achieve primary disinfection                                                                                                | 5 minutes                               | Not applicable                             | 0.1 milligrams per litre less than the concentration of free chlorine residual that is required to achieve primary disinfection     |
| 2.   | Free chlorine residual and total chlorine residual measured for the purpose of determining combined chlorine residual required to achieve primary disinfection | 5 minutes                               | Not applicable                             | 0.1 milligrams per litre less than the concentration of combined chlorine residual that is required to achieve primary disinfection |
| 3.   | Free chlorine residual in a distribution sample                                                                                                                | 1 hour                                  | Not applicable                             | 0.05 milligrams per litre                                                                                                           |
| 4.   | Free chlorine residual and total chlorine residual measured for the purpose of determining combined chlorine residual in a distribution sample                 | 1 hour                                  | Not applicable                             | 0.25 milligrams per litre                                                                                                           |
| 5.   | Turbidity                                                                                                                                                      | 15 minutes                              | 1.0 Nephelometric Turbidity<br>Units (NTU) | Not applicable                                                                                                                      |



## **What Needs Time Sync?**

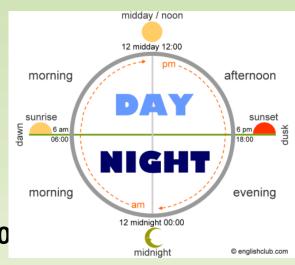
- SCADA Servers
  - Data Gathering Machines
  - Historians
  - View Nodes
  - Reporting Systems
  - Backup Systems
- SCADA View Nodes
- Network Routers/Switches
- PLC/PAC/RTU
- Dataloggers
- Instrumentation with Logging







#### What is Time?


#### **Local Solar Time**

- 24 hours in a day
- With 12noon being the sun at its highest

#### **Local Time**

- A "local solar time" that is picked for each area
- Will be part of a "Time Zone"
- Expressed as an offset from "UTC Time"
- Canadian Daylight Savings Eastern Time is UTC-04:00

# Sunrise You Sunset



#### **UTC Time**

 The local time at Greenwich (an observatory near London UK)

2:23 p.m.

Sunday, April 7, 2019 Eastern Time (ET)



## **Local Time Means using Time Zones**



Image courtesy of whatsanswer.com

#### **Remember Greenwich?**

- Observatory built near London in 1675, by order of King Charles II
- Built to precisely measure "local solar noon"
- "Greenwich Mean Time"
- (now called UTC = universal coordinated time)
- Red ball drops at 1:00 PM every day
- Use by ships to synchronize their clocks
- Ship navigation depends on precise time
- Red Ball was an early method for "time synchronization"





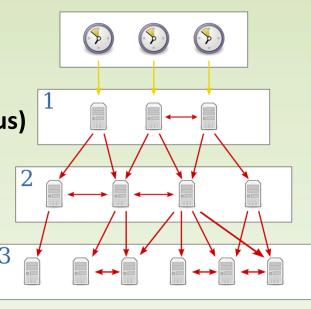
## **Modern Time Sync Protocols**

#### **General Ethernet Networks**

- NTP = network time protocol (approx. 1ms accuracy)
- SNTP = simple network time protocol
- PTP = precision time protocol (<1ms accuracy)</li>
- w32time = propriety protocol used by Window XP, Server2003

#### **Control System Networks**

- Proprietary network protocols (e.g., CIP, GE, etc.)
- DNP3 = has time synchronization built in
- Some fieldbus protocols have time sync (e.g., profibus)


#### Radio

Atomic Clock Broadcasts (e.g., WWV from Colorado)

#### **Hardwired Signals**


IRIG B, Pulse, Sine Wave, etc.

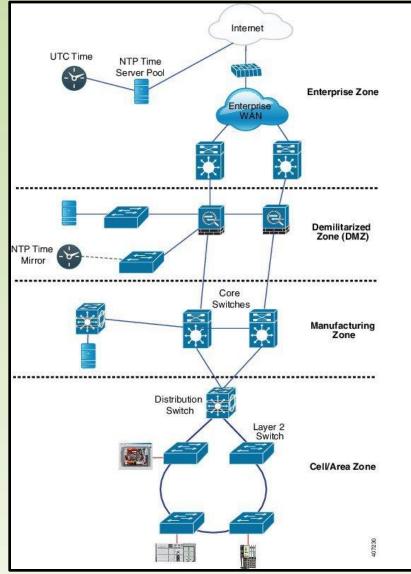






## **Typical Time Distribution Architecture**




Stratum levels 1/2 most appropriate for serving telecom applications:

- · Stratum 1 NTP essential for elements using SNTP.
- Stratum 2 NTP with holdover for telecom applications not requiring high accuracy (1ms-1sec).

Source: Symmetricom / Microsemi

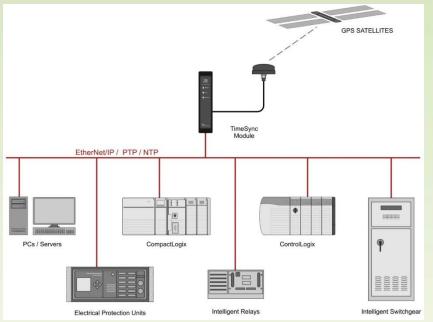
How to apply this to a SCADA control system network





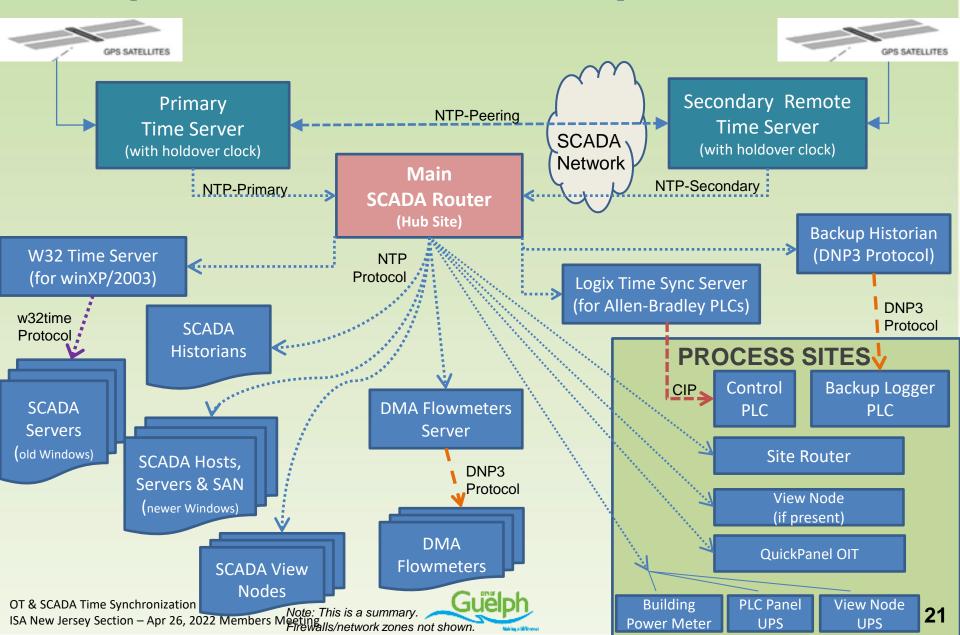



## **Picking a Time Source**


- GPS Receiver gets time from GPS Satellites (which have atomic clocks)
- AM Radio Broadcasts there are signals with time codes (from atomic clocks)
- **GSM/CDMA Cellular Signals** contain time codes (from Cell Towers)
- Raw Internet connection from Internet time servers (firewalls must be used!)
- Your IT Department via Internet time servers (firewalls must be used!)
- Periodically setting a master clock manually not recommended
- None not recommended
- Most common approach is to have a Time Server
  - Must Receive "Time" from known-good time source
  - Will often have a "holdover clock" to keep time, when external source not available
  - Time is then "distributed" to other servers/computers using NTP protocol
  - SCADA Network routers often used to further distribute time across network
  - Some PLCs may require a helper server to run a special time protocol (e.g., CIP, GE)



## Reminder: Devices that need time synchronization


- SCADA Servers
  - Data Gathering Machines
  - Historians
  - View Nodes
  - Reporting Systems
  - Backup Systems
- SCADA View Nodes
- Network Routers/Switches
- PLC/PAC/RTU
- Dataloggers





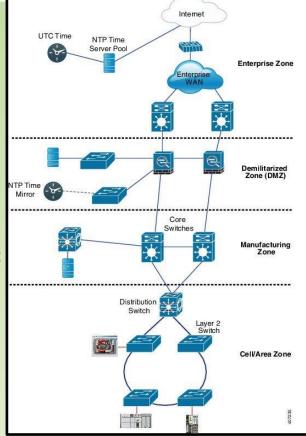


#### **Guelph Water SCADA Time Sync Scheme**

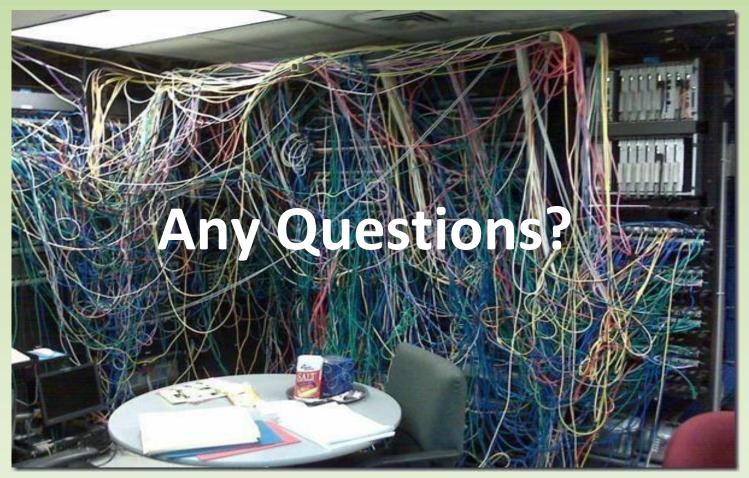


## **Time Sync Best Practices**

#### Yes, you do need to do this!


- Timestamps need to be correct on logged data
- Backup dataloggers are only useful if time is correct
- Calculating Daily Flow Totals, Viewing/Reporting Data
- Time-based control: Peaking Wells, Filling Reservoirs at Night

#### Select a Time Source for your SCADA System


- Not Good: No Time Source
- Poor: Pick one server as "Master"
- Good: NTP from IT Department
- Better: GPS Time Server, with secondary NTP backup
- Best: Two GPS Time Servers, NTP peering each other

#### Distribute Time in the SCADA System

- Not Good: No Time Sync Distribution
- Poor: Historian, View Nodes, and Reporting Servers synced
- Good: Historian, View nodes, PLCs, and Reporting Servers synced
- Better: Historian, View Nodes, OITs, PLCs, Switches, Reporting synced
- Best: Every device, which has a clock in it, is receiving time synchronization







\* Not a High Performance SCADA System

Graham Nasby, Water SCADA & Security Specialist graham.nasby@grahamnasby.com

